Manufacturing Optimization

Richard Troxell Director of Business Consulting

velocity

CONNECT + ACCELERATE + INNOVATE

GC

Manufacturing Business Challenges

- Managing manufacturing complexity while minimizing planning time
- Re-planning due to demand, supply, or capacity changes
- Lack of quick what-if analysis
- Lost production time due to inefficient sequencing

Impact on the Business

- Low customer satisfaction
- Lost sales opportunities
- Higher production costs
- Higher supply chain costs
- Lower profitability

Real World Constraints

VELOCTY

Impact on the Supply Chain Planning Process

- Unreliable capacity plans and production schedules make it difficult to balance supply and demand
- Other departments miss their targets:
 - Demand Planners
 - Inventory Management
 - Manufacturing
 - Sales and Customer Service

Production Planning and Scheduling

Capacity Planning and Scheduling

10	Department	Machine Type	Efficiency	Lines Avail		-				Ford	casted H	lours
11	Thermoforming PP	Brown-52	85%	1	266	210	193	225	237	207	191	243
12	Thermoforming PP	Lyle-52H	85%	2	1,038	909	1,058	888	1,005	974	862	1,080
13	Thermoforming PP	Total	85%	3	1,303	1,119	1,251	1,113	1,242	1,180	1,053	1,323
14												
15												
16	Department	Machine Type	Efficiency	Lines Avail						Ford	casted F	lours
17	Straws	Flex	85%	3	628	439	458	404	421	522	398	529
18	Straws	Straws	85%	14	4,111	3,520	8,133	7,538	7,581	8,617	7,122	8,206
19	Straws	Total	85%	17	4,739	3,959	8,591	7,942	8,001	9,140	7,520	8,735
20												
21												
22	Department	Machine Type	Efficiency	Lines Avail						Fore	casted H	lours
23	DK	JK / Pouch	85%	2	24	24	29	21	24	21	21	32
24	DK	Dinner Kits 1,2,3	85%	6	3,057	2,886	2,843	2,710	2,762	2,426	2,568	2,656
25	DK	Dinner Kits 4	85%	2	320	3 22	28	19	25	35	23	29
26	DK	O.Wrap / CK	85%	2	9	6	4	4	6	4	4	3
27	DK	Total	85%	12	3,123	2,938	2,903	2,755	2,816	2,486	2,616	2,721

45%	41%	48%	50%	34%	45%	43%	39%	47%	41%	38%	43%
23%	18%	15%	15%	18%	18%	20%	16%	16%	12%	14%	17%
74%	75%	69%	78%	60%	70%	75%	63%	68%	60%	61%	69%
28%	30%	28%	24%	25%	29%	29%	29%	20%	22%	19%	26%
10%	11%	8%	14%	10%	11%	12%	7%	15%	8%	6%	10%
15%	14%	11%	15%	17%	11%	14%	17%	13%	15%	15%	15%
42%	31%	32%	24%	27%	32%	29%	32%	34%	68%	50%	39%
46%	42%	42%	42%	35%	41%	43%	39%	37%	28%	26%	39%
50%	45%	46%	48%	42%	44%	45%	45%	45%	41%	41%	46%
45%	41%	36%	37%	31%	40%	41%	39%	33%	27%	24%	37%
57%	54%	59%	59%	53%	54%	57%	53%	54%	51%	52%	56%
32%	27%	27%	27%	27%	30%	27%	23%	22%	16%	9%	24%
69%	65%	72%	72%	67%	72%	67%	67%	67%	67%	67%	68%
84%	78%	87%	87%	81%	87%	81%	81%	81%	81%	81%	84%
69%	64%	67%	72%	64%	59%	64%	70%	63%	64%	64%	66%
62%	63%	57%	67%	56%	59%	62%	61%	58%	55%	50%	60%
17%	12%	9%	10%	10%	9%	14%	14%	19%	19%	11%	14%
10%	8%	10%	8%	8%	8%	10%	9%	7%	9%	5%	9%
43%	39%	39%	40%	36%	40%	40%	39%	38%	35%	32%	39%

1							Jan	Feb	Mar	Apr	May	Jun	Jul	FY
2	Department	Tool	Machine Type	Prod Line	Efficiency	Tools Avail	Fore	ecasted H	lours					
3	Injection Molding	F1	KM450	F1	80%	2	340	412	386	428	456	309	332	4,769
4	Injection Molding	F2	KM450	F2	80%	1	248	303	308	279	338	294	275	3,652
5	Injection Molding	F3	KM450	F3	80%	1	129	121	146	113	114	88	103	1,471
6	Injection Molding	H1	KM450	Н1	80%	1	435	471	539	457	493	433	441	5,842
7	Injection Molding	H3	KM450	H3	80%	1	178	195	208	208	145	156	136	2,233
8	Injection Molding	H4	KM450	H4	80%	1	75	77	86	53	106	60	45	862
9	Injection Molding	КЗ	KM450	K3	80%	1	124	74	103	121	97	111	107	1,257
10	Injection Molding	C7	KM450	C7	80%	1	195	217	210	231	244	488	361	3,314
11	Injection Molding	P1/C1	KM450	P1/C1	80%	3	758	836	934	850	791	605	563	10,005
12	Injection Molding	P2/C2	KM450	P2/C2	80%	2	608	595	653	641	652	592	585	7,781
13	Injection Molding	P3/C3	KM450	P3/C3	80%	3	674	810	883	840	711	583	511	9,366
14	Injection Molding	P4/C4	KM450	P4/C4	80%	1	383	363	408	382	389	364	373	4,750
15	Injection Molding	P5/C5	KM450	P5/C5	80%	3	578	596	582	502	474	344	186	6,242
16	Injection Molding	PL2	KM450	PL2	80%	1	481	481	481	481	481	481	481	5,775
17	Injection Molding	PL3	KM450	PL3	80%	1	583	583	583	583	583	583	583	7,192
18	Injection Molding	S1	KM450	S1	80%	2	914	795	925	1,005	902	929	917	11,225
19	Injection Molding	\$2/H2	KM450	S2/H2	80%	1	406	396	449	439	415	394	361	5,111
20	Injection Molding	\$3	KM450	\$3	80%	1	74	59	98	103	135	136	80	1,163
21	Injection Molding	\$4	KM450	\$4	80%	1	61	54	74	62	53	65	39	747
22	Injection Molding	Total			80%	28	7,246	7,438	8,057	7,777	7,579	7.014	6,480	92,756

Manufacturing Optimization (MO)

Welcome to th	e Portal
Production	Anns
1 Totalololi	
Manufacturing Opti	nization
Demo Apps	
Manufactur	ng Optimization
A	

Master Production Scheduling

From Wikipedia, the free encyclopedia

- A master production schedule (MPS) is a <u>plan</u> for individual commodities to be produced in each time period...This plan quantifies significant processes and resources in order to optimize production, to identify bottlenecks, and to anticipate needs ...Typical MPSs are created by software with user tweaking.
- Master Production Schedules do not include every aspect of production, but only key elements that have proven their control effectivity...The choice of what to model varies among companies and factories.
- The MPS translates the customer demand (sales orders, PIR's), into a build plan using planned orders...Using MPS helps avoid shortages, costly expediting, last minute scheduling, and inefficient allocation of resources...
- ► A MPS is not a Final Shop Schedule ... calculating scheduling and execution details after MRP

Capacity Planning with MO

Monthly, Weekly, Daily

- Constrained Master Production Schedule
 - Multiple scenario comparisons unconstrained vs. constrained
 - Handle multiple plants and contract manufacturers
 - Take demand, fill in capacity model and
 - ▶ Leave things in an overload situation to show
 - Exactly how over utilized key resources are
 - Exactly which products and/or customers are at risk
 - And ...
 - Perform "build ahead" level loading
 - Show how soon to start production to avoid the overloads and satisfy demand

Planning Process Flow

Model any production process:

- Batch process Food, pharma, beverage, paint, CPG, chemical, etc.
- Discrete Fab/Assembly Automotive, aerospace, job shop, etc.
- Make to Order, Make to Stock
- Model any calendar:
 - By plant, department or individual work station
 - Operators as well as equipment
- Model any secondary constraint:
 - Tooling, operators, critical BOM items, etc.
- Model set up/changeover/cleanup segments accurately:
 - Set up/clean up segments calculated dynamically and sequence-dependent

Planning Process Flow

Long Term Capacity Plan

		LATE:						
Machines	y 🚥	Ele .	il la	044br	67 <i>a</i>	1944		
Sate1		ROADINE						
Sule2				_				
Une P01						_		
Line PO2				_			_	-
Une POD		Index South			· ·			

MO Progressive Disclosure Menu

Ę			
•••	Workspaces	>	Plants
les.	Capacity	>	Plant Areas
	Product	>	Machines
2	Process	>	Tooling
L eo	Demand	>	Labor
	Reports	>	Work Centers
٠	Settings	>	Cueles
P	Notifications		
Ø			Patterns
			Holidays

٤Ğ			
•••	Workspaces	>	Work Orders
I	Capacity	>	Order Filter
	Product	>	Due Date Quoting
2	Process	>	Order Split
ľQ.	Demand	>	
.	Reports	>	
٥	Settings	>	
P	Notifications		
Ø			

Ę			
	Workspaces 3	>	Routings
I	Capacity	>	Codes
	Product	>	Equations
2	Process	>	Matrices
k a	Demand 3	>	Look Up
	Reports	>	
٠	Settings	>	
P	Notifications		
۲			

Capacity Planning Model

- Increase schedule visibility
 - Can be driven by bottleneck process
- Production schedule
 - Sequence dependent setups
- Detailed shop calendars and setup calculations provide true capacity requirements

MO Environment

MO Tailored Workspaces

MO Scheduling and Capacity Planning Settings

۲ <u>ښ</u>	Gantt2 🕘 🔉	Sandbox Schedule 🕘 > DefaultPA 🕘		鹤	<u></u>	00
-0	All Orders 🛛	Jan 01, 2018 - Mar 02, 2018 ③	Day 💉		Generate Schedule	
Ę	Gantt2 🧿 📏	Sandbox Schedule 💿 > DefaultPA 💿		10	<u>.</u>	00
	All Orders 🙂	Jan 01, 2018 - Mar 02, 2018 🐵	Day 🗸	Get Live Schedule	()	
	Machines	Mar 2018				

Generate Schedule				×
	Order Filter	Schedule Setting	Generate	
	•			
Select Order Filter	Select Setting			
-Select-	-Select-			
			Generate Schedule	

MO Scheduling and Capacity Planning Settings

DefaultPA 🕒

Ę	Gantt2	٩

Sandbox Schedule ()

All Orders ③ Jan 01, 2018 - Mar 02, 2018 ④

Configuration	>
	Run Units Pieces/Hour Voertime Hours Hours Hours Voertime
Hours	Hours
Predecessor Operations	~
Successor Operations	~
Lateness	Ontrin Onulation
	Setup Savings
Cost Function	Promptness
Cost Function Preference	Promptness Idle Cost
Cost Function Preference JIT	Promptness Idle Cost

Ō

Day

 \mathbf{v}

Q, Global Settings

The Virtues of Clean Planning

► Feasible plans

- Lead to achievable schedules
- Difficult to do in complex environments
- Achievable schedules
 - Start with feasible plans
 - Lead to predictable production
- Predictable production
 - A "Lean" principle
 - Symptom of good planning

MO Master Production Schedule

Monthly, Weekly, Daily

- Evaluating a production plan: Utilization of machines & parts produced
- Review resource utilization and allocation of time to products
 - Allocation of production lines to products by family, customer, etc.
 - Utilization summaries by production line and / or location and / or facility
 - Total time spent on each machine
 - Overall utilization of the machines

Capacity and Utilization

- Minutes used by Setup, Run, and Cleanup processes over time
- Minutes utilized by part by time
- Total minutes used by machine over time
- Utilization of machine over time

THANKYOU