## Demystifying Machine Learning

Tom Gielow Vice President Technology & Architecture

# Velocity

CONNECT + ACCELERATE + INNOVATE





IGC



### **Google Trends Data**



### **Google Trends Data**









### What is Artificial Intelligence?

Artificial Intelligence: The theory and development of computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decisionmaking, and translation between languages.



### **Strong vs. Weak Artificial Intelligence**

### **STRONG AI**

- Human-like broad intelligence
- Understands problems and context
- Examples
  - HAL 9000
  - C3PO
  - Lt. Commander Data

### WEAK AI

- Limited to specific tasks
- Solve complex problems without understanding them
- Examples
  - Match search terms to pages
  - Recommend TV shows based on views

### **Machine Learning**

# Input • • • • Model • • • • Output

![](_page_8_Picture_0.jpeg)

### **Building a Machine Learning Model**

![](_page_8_Picture_2.jpeg)

- MNIST dataset
  - 70 000 handwritten digits

![](_page_9_Picture_0.jpeg)

### **Building a Machine Learning Model**

![](_page_9_Picture_2.jpeg)

- MNIST dataset
  - 70 000 handwritten digits
- Each image is labeled according to its contents

### VELOCITY

### **Building a Machine Learning Model**

![](_page_10_Picture_2.jpeg)

### MNIST dataset

- 70 000 handwritten digits
- Each image is labeled according to its contents
- Data that represents images with label fed to ML algorithm

### **Building a Machine Learning Model**

![](_page_11_Picture_2.jpeg)

### MNIST dataset

- 70 000 handwritten digits
- Each image is labeled according to its contents
- Data that represents images with label fed to ML algorithm
- Model is produced that can recognize handwritten digits

**Unsupervised Learning: Clustering** 

![](_page_12_Figure_2.jpeg)

### **Types of Machine Learning Problems**

![](_page_13_Picture_2.jpeg)

![](_page_13_Picture_3.jpeg)

Regression

Classification

### **Deep Learning**

- Usually an artificial neural network
- Extracts important information from data automatically
- Potential for better results than other ML methods
- Require large amounts of data
- Computationally intensive

![](_page_14_Figure_7.jpeg)

![](_page_15_Picture_0.jpeg)

### **Artificial Intelligence Hierarchy**

![](_page_15_Figure_2.jpeg)

### **Machine Learning Examples**

### Personalized marketing

- Targeted ads based on browsing history
- Recommend media based on previous consumption
- ► Healthcare
  - Diagnose illnesses based on symptoms
  - Identify risk factors/illness in healthy patients

### Fraud detection

- Identify transactions that are out of character
- Predict outcome of sporting events
  - Google NCAA March Madness predictions on Kaggle

### Property valuation

 Attributes of properties can be used to build models that predict possible future sales value

![](_page_17_Picture_0.jpeg)

### **Step 1: Educate the Organization**

- Understand the technology.
- What questions need answering?
- Evaluate business needs before developing solutions.

### VELOCTY

### **Step 2: Map Problems to Technology**

- Lots of data ≠ need for ML
  - Data analysis
  - BI Tools/Excel
- Consider rule-based systems
- Is the problem one of:
  - Predicting outcomes?
  - Classifying objects?
  - Grouping objects?
- Use deep learning only when necessary

### **Step 2.5: Consider Humans**

- Building ML based solutions are expensive
- ► The model may work, but the product may not.
- Substitute model for humans while tweaking output.

![](_page_20_Picture_5.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_22_Picture_0.jpeg)

### **Building an AI/ML Solution**

![](_page_22_Figure_2.jpeg)

### **Quantify the Problem**

![](_page_23_Figure_2.jpeg)

- Be very specific about what you want
- Words like "best" do not mean the same thing to everyone
- Business users and machine learning experts must communicate

### **Exploratory Analysis on Available Data**

![](_page_24_Figure_2.jpeg)

- ► What databases are available?
- ► How well are they documented?
- ► What is their purpose?
- What business processes are they involved in?
- What type of data do they contain?
- How are they currently used in decision making processes?

### **Preprocess Data**

![](_page_25_Figure_2.jpeg)

- ► The process of getting data ready for ML
- Creating new data from other data
- Data cleaning
- Consolidating data from different sources
- Converting between formats

### Variable (Feature) Selection

![](_page_26_Figure_2.jpeg)

- Select relevant variables
- Discard irrelevant variables
- Leads to better results
- Shorter training times

### **Model Construction**

![](_page_27_Figure_2.jpeg)

- Feed prepared data to candidate ML algorithms
- Set relevant (hyper)parameters
- Model is produced that can make predictions based on new inputs

### **Model Evaluation**

![](_page_28_Figure_2.jpeg)

- Evaluation on accuracy
- More sophisticated evaluation methods also required
  - Sensitivity
  - Specificity
  - AUC ROC Curve
  - Etc.
- Machine learning is an iterative process

### **Operationalize Model**

![](_page_29_Figure_2.jpeg)

- Put the model to use
- Don't forget to develop software around the model
  - **REST API** 
    - Single record
    - Batch of records
    - CSV
- Model output as input of another model

### **AI at Demand Solutions**

- Review of our current forecasting methodology
- New forecasting engine
  - New methods
  - Machine Learning based forecasting
- Anomaly detection
  - Clean historical data
  - Provides for more accurate forecasts

### **AI at Demand Solutions**

- Incorporation of external data sources ML models
- Classification of imported data automate importing
- Natural language based commands via Cortana
- Predicting machine failure using real-time data
- Microsoft Azure is a key component

![](_page_32_Picture_0.jpeg)

### Conclusion

![](_page_32_Figure_2.jpeg)

![](_page_32_Figure_3.jpeg)

### References

- Artificial Intelligence for Business: What You Need to Know about Machine Learning and Neural Networks, Doug Rose
  <u>https://www.amazon.com/Artificial-Intelligence-Business-Learning-Networks-ebook/dp/B07CCLXFY1</u>
- Artificial Intelligence and Machine Learning for Business: A No-Nonsense Guide to Data Driven Technologies, Steven Finlay <u>https://www.amazon.com/Artificial-Intelligence-Machine-Learning-Business-ebook/dp/B0719VH2KR</u>
- Data Jujitsu: The art of turning data into product, DJ Patil <u>https://www.amazon.com/Data-Jujitsu-Turning-into-Product-ebook/dp/B008HMN5BE</u>
- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Aurélien Géron <u>https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1491962291</u>
- The State of Machine Learning Adoption in the Enterprise, Ben Lorica & Paco Nathan <a href="https://www.oreilly.com/library/view/the-state-of/9781492044383/">https://www.oreilly.com/library/view/the-state-of/9781492044383/</a>
- History of Artificial Intelligence Wikipedia

https://en.wikipedia.org/wiki/History\_of\_artificial\_intelligence

![](_page_34_Picture_0.jpeg)

# THANKYOU