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Demand Forecasting

► Predict future demand from historical 
data
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Demand Forecasting

► Predict future demand from historical 
data

► Many different approaches

► All require good quality data
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Demand Forecasting

► Predict future demand from historical 
data

► Many different approaches

► All require good quality data

► Types of errors
▪ Technical errors

▪ Anomalies
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What are Anomalies?

► Another name for outliers

► Data that does not accurately reflect 
historical demand

► Common Types
▪ Simple spikes

▪ Upward/downward shift 

▪ Change in level
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How do we deal with Anomalies? 

Build Multivariate Model

► Predict effect of events before they occur

► Considerable effort to develop solution

Remove anomalies

► Still need to manage events if possible

► Cheap solution with right method
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Motivation

► Degradation in forecasting accuracy

1. Large scale restructuring of supply chain

2. Extensive use of promotions and “deep discounts”



Seasonal-Hybrid-ESD

► Method for anomaly detection in 
time series data

► Developed by researchers at Twitter

► Deals with local and global 
anomalies
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Seasonal-Hybrid-ESD



Algorithm
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Our Prototype

► Prototype developed

▪ Proof on concept

▪ Available software not compatible with low 
frequency data

► Lives outside of DSX

▪ Reads data from database

▪ Performs anomaly detection

▪ Write results back
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Results



Anomaly Detection Example
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Anomaly Detection Example
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Anomaly Detection Example
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Anomaly Detection with Real Data

Historical Data



Anomaly Detection with Real Data
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Anomaly Detection with Real Data

AnomaliesCleaned Data



Forecasting Comparison

Forecast Original History Forecast Cleaned History Historical Data

49% 29% 20% 13% 64% 31%

109% 26%92% 34%66% 49%



Accuracy Improvement
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Accuracy Improvement
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A 1% Improvement in Forecast Accuracy Leads to…

2.4% decrease in order-to-delivery days (cycle time)

0.4% increase in perfect order performance (on time, in full)

2.7% reduction in finished goods inventory (days)

3.2% reduction in transportation costs (percent of sales)

3.9% reduction in inventory obsolescence (percent of inventory value)

Source: “Win the Business Case for Investment to Improve Forecast Accuracy,” Gartner, May 2017

Consumer Goods (nonfood and beverage)



Conclusion

► S-H-ESD has a good success rate for detecting/removing anomalies

► Removing anomalies generally leads to improved forecasts

► Simpler/cheaper solution than alternatives
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QUESTIONS?



THANK YOU


